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1 3 0 AN "INVARIANT" PROPERTY OF SATELLITE MOTION 
IN A DISSIPATIVE MEDNM 
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Rmce C. Ylmay* and Alan R. Leest 

A simple expression is derived for near-circular orbits which relates b e  at&rare in 
insrant~nous angular momentum cd a satelliteasobaervedat w different rimcs from the 
same smdm to the dissipativr prrurbing f w e s  wfiich .cad m Ih? satellite durbg rhat 
time inm-val. This uprss ion is valid for an arbitrarilyasymmeuicgravityfield. 
Possible applications m the measurement of very shm-mrm atmosphric density varia- 
tions an) to tbc improvement dknowiedgeabanrheutWsshqpandgravityfieldare 
dcstribed 

INTRODUCTION 

With the successful demonstration by the first "transit" vehicles of a precise 
radial-velocity measuring system, the need is developing for precise dynamical 
expressions which involve the actual instantaneous velocity of the satellite as it 
moves in the actual terrestrial gravity field where it is subject to unpredictable 
short-term fluctuations in drag. The object of the present investigation has been 
the development of several such expressions to exploit the intrinsic value of 
velocity observations, at least for the case of a near-circular orbit. It is felt 
that the classical method of deriving orbital relationships, and hence observa- 
tional relationships, is limited in its applicability to velocity observations because 
the equations of motion have been integrated twice. A s  a result of this approach, 
no description of the positionorvelocity is complete unless all the secular, long- 
period, and short-period variations due to the noncentral components of the 
earth's field a re  included. It has not proven possible, so far, to formulate pre- 
cisely by classical methods all the effects of the known departures from a central 
force of the earth's field. Hence, it is our feeling that theories involving only a 
single integration of the equations of motion and yielding results applicable 
directly to velocity observations will be required in order to exploit fully the 
observational accuracy Nhich apparently is going to be achieved in the next few 
years. 

In this paper, which represents apreliminary approachto the above problem, 
we will develop the fundamental differential equation of motion suitable for our 
purposes. The equation will be integrated for the very special but useful case of 
a near-circular orbit, and some possible applications of that integrated form 
will be discussed. 

DEVELOPMENT OF THE EQUATIONS 

In this section will be developed a property of the motion of an earth satellite 
which finds application both in situations where air  drag and noncentral compo- 
nents of the earth's gravity field have a significant effect on observations as well 
as in those cases where the motion can be considered to take place in a conserva - 
tive medium. 
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n 
The dynamicdrl discussions will be framed in three conventional coordinate 

1. The spherical polar inertial (r ,  a ,  6 )  system in which r is the length of the 
vector from the center of mass of the earth to the satellite and a and 6 are, 
respectively, the right ascension and declination of the satellite a s  viewed 
by an observer at the center of the earth 

2. The Eulerian (r, u ,  1 ,  Q) inertial system in whichr is defined a s  above, u is 
the argument of the satellite in the instantaneous orbital plane and is 
measured from the ascending node, L is the inclination angle of the instan- 
taneous orbital plane to the plane of the equator, andn is the angle, 
measured westward, from the vernal equinox to the ascending node 

3. The rotating geocentric system (r, t+h, h) in which r is again the geocentric 
radius vector, $ the geocentric latitude, and A the longitude. Nutation and 
precession of the earth a re  not considered in this discussion. 

These various geometrical quantities are illustrated in Fig. 1 from which the 

systems defined a s  follows: 

geometrical relationship between them may be written down. 

r = r = r  (1) 

a = A  + w,t = C2 + tan'' (cos r tan u) 

6 = clr = sin-' (sin u sin r )  

(2) 

(3) 1 
w. is the sidereal rate of the earth and t is sidereal time. The elements of the 
system (r, u, L, Q) a re  not expressible uniquely in terms of r ,  h , and 6 alone since 
the orbital plane depends not only on the position of the satellite but also on the 
direction of the instantaneous velocity vector. If it were important to have a bi- 
unique relationship between the two sets of variables then a ,  and 6 could be aug- 
mented by a third quantity depending on 6. and 8 .  In the discussion that follows, 
however, only the (r, u, L, G) + (r, a ,  6) transformations are required, and hence 
Eqs. (l), (2), and (3) a r e  sufficient. 

It is not difficult to show that the elements (r, U, t, TL) form a permissible set 
of Lagrangian generalized coordinates for descending the state of the dynamical 
system [l] and thus the general equations of motion may be written in terms of 
these variables. Because the earth has longitudinal variations in its gravitational 
field and it is also in a state of rotation, the force field in inertial coordinates 
in which the satellite is moving is partly nonconservative. This raises an initial 
difficulty since the potential function is customarily defined only for conservative 
fields. There does not appear to be any problem, however, in these considerations, 
at least in introducing a pseudopotential function U which is time varying and 
which, at any time, has a gradient equal to the real force field at that time. 
Moreover, it is apparent thai  the diurnal time average of U viewed in the inertial 
system, which is written U, is the potential function associated with the con- 
servative force field due to an axially symmetric earth. The gradient of the 
time-varying residual, Up, gives the perturbative force field due to longitudinal 
variations in the earth's field. 

Specifically, we can write in the complete tesseral harmonic form, 
N n  

n=O m=O (4) 
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and 
u 

where 

- 
U is, therefore, the conventional zonal harmonics and Up is the remainder of 

The Lagrangian L may be defined conventionally in terms of the kinetic 
the set in which the time-dependent coordinate A appears explicitly. 

energy T of the satellite and the potential function U as - 
L = T - U  

where, from the geometry of Fig. 1, T has the form 

T =  H m  [ i ~ + r 2 ( I j + n c o s t ) a ] =  % r n ( V : + ~ : )  (7) 

and m is the mass of the satellite. The formal Lagrangian equations of motion 
may be written 

where the quantities on the right-hand sides of these equations a re  the general- 
ized, external, nonconservative forces on the satellite. In addition to the per- 
turbations arising from the longitudinal inhomogeneity of the earth. which have 
been discussed above, the external forces include air drag and a number of other 
effects of lesser significance, (e.g., lunisolar and planetary perturbations, 
atmospheric rotation, radiation pressure, particle bombardment). In the treating 
of the problem presented here, our considerations have omitted the effects 
mentioned in parentheses. Presumably, they would be introduced as special 
perturbations in actual application. 

At  any instant in time, the total nonconservative perturbative forces acting 
on the satellite may be resolved into three o r t h o g o ~ l  components which a r e  
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Fig. 1. Instantaneous osculating plane. 

(1) along the radius vector, (2) in the instantaneous orbit plane and normal to 
the radius vector, (3) normal to the orbit plane. Taking the most general point 
of view, the effect of the atmosphere will contribute to all three of these force 
components, but by far the most importantcontributionis in the orbit plane only. 
W e  will represent the total aerodynamic force vector by A with components 
A, A,, and A ,  corresponding, respectively, to the cases (l), (2). and (3) above. 
A ,  is a contributor to the generalized force .fr and similarly r A ,  is a contributor 
to 5,. The normal component, A ,  contributes both to t1 and to tal and by taking 
resolved components, the contribution to 5, is A, sin u and to tQ is A ,  COS U. An 
analogous discussion may be applied to the force vector P arising from the 
longitudinal gravity field perturbations and having components Pt , P,, , Pt. Adding 
together these two perturbation effects and neglecting any others yields for the 6 ' s  
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where we have written the total perturbative force vector on the satellite as F. 
Attention will now be directed only toward the Lagrangian equation (9). The 

potential function is, a function of r and 6 (but not -), and since it is recalled 
from Eq, (3) that S is a function of u and L only, say 6 (u, L ) ,  then may be 
written v E, S (u, 1 1 ,  hence, V (r, u, 1 ) .  Consequently, 

and 

But ir >> i 

hence, 

Also, the general definition of angular momentum as  the partial derivative of the 
Lagrangian with respect to the velocity allows us to associate the name instan- 
taneous total angular momentum, Pu as follows: 

(19) aL 
air pu= - = m r z ( i + Q c o s O = m r Y ,  

where V is the instantaneous velocity and V, and V, are  the tangential and 
components. Finally, we may rewrite Eq. (9) a s  1 

Let us now investigate the formulation of the e,, quantity when the perturbative 
forces a re  contributed by Up, the pseudopotential. We  are interested in deter- 
mining its partial derivative with respect to U, i.e., the force. In general, however, 
the earth's field is expressed in terms of the coordinates (r, $, A) where A and+ 
are  the longitude and latitude, y5 I 6 and A = u - wet. Thus, the conventional form 
of writing the potential, Up (r, A, $) may be expressed analogously a s  Up (r, u-w.~, a), 
and noting from Eqs. (1) and (2) that - and S a re  specific functions of u, L .  and 
a. w e  have 

Taking the partial derivative for variations in u only 

av, au, & av, as - 
aA Z +  as Z - _ -  - 

and since the gravitational part of the generalized force is merely WJ&, 

av da w as 
ah au as du 

= P  -+ 3 -+ rA, 

(22) 
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Finally, we write the drag term of tu as  

rA,(t) 

where A, ( t )  is the instantaneous (and time-varying) total aerodynamic force 
component oppositely-directed to the direction of rdu. The basic equation of 
motion for the u coordinate now becomes, from Eqs. (20), (23), and (24) 

&j= - -  + 5 E) dr + rA,( t )dt  e 2 as au 
1 8: 

flu+ - - 
i as 

By integrating this equation over an arbitrary time interval t ,  to t 2 ,  we may 
express the change of angular momentum in this interval a s  

The left-hand side of this equation is exact since a perfect differential has been 
integrated. The right-hand side has been subject only to the approximation of 
Eq. (17), which would be insignificant for any real situation. Of course, a general 
integration of the right-hand side is not possible without complete knowledge of 
the real gravity field, of atmosphere dragvariations, and of the ephemeris of the 
satellite. Thus, its only usefulness inthis form would be a s  a general consistency 
criterion to be applied to satellite observations in conjunction with the gravity 
and atmospheric models used in the reduction of those observations. In the fol- 
lowing section, however, we will show that for those cases where the percentage 
variation in r is small during the integration a simple, but still accurate, re- 
lationship can be obtained for repeated observations from the same station. 
Equation (26) can also, after rearrangement, and substitution, be evaluated for 
orbits of moderate to large eccentricity, usingnumerical integration based on an 
ephemeris. Such techniques will not, however, be developed in the present 
investigation. 

INTEGRATION OF THE t( LAGRANGIAN WHEN 
VARIATION IN Y IS NEGLIGIBLE 

In this section we shall consider the three terms on the right-hand side of a. (26) separately for the case where the variation in r and, hence, in ti is small. 
Also, the previous approximation in Eq. (17) that ir >> i will be repeated here in 
the form that t will be considered to be constant or ,  at least, not to introduce 
residual terms during the integration over time. The limits of integration will 
be from t ,  to t ,  where t ,  and 1, a re  chosen to correspond to the positions of the 
satellite when passing over the same place on the earth. Thus, the positions of 
the satellite at the limits can be written (r, A, 6 )  and (r,, A, a). The geocentric 
radial distance r thus is permitted to change slightly during the interval of in- 
tegration due to the action of nonconservative forces. A and 6, however, are  
assumed to be identical at both upper and lower limits. In practice, small dif- 
ferences in the values of A and 8,  such a s  would correspond to the distribution of 
observations from a single station, would not limit the application of the equations. 

W e  may now rewrite the first term on the right-hand side of Eq. (26) a s  
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Since u is a potential function, this integral would vanish exactly if rl = rp The 
residual term in the present case differs from 0 only i n  that d v /  dr is a slowly- 
changing function of I due to the noncentral forces in the earth's field. A s  long 
as (rl - r2)/(r1 + r2> is small, however, the integral will differ from 0 by an in- 
sigmficant amount, and it is considered to vanish for the present discussion. 

The second integral on the right-hand si& will be considered in two parts. 
First, the second term in the integral can be rewritten a s  

because 6 I 6 (rr& and 

The integral vanishes for the same reasons and with the same approximations as 
Eq. (27). The first term of the second integral on the right-hand side can be 
rewritten as 

because a = a b, 1, a), and 

ao,L,h dn-aoA.&-&! an 
J a d r r d d n d i d b d b d d a  

but da/& = 1, and fi/h is quite small. Hence, the integral becomes 

Now, since 

then, 

and Eq. (32) becomes 

a = X + w , t  

& = dA+ W , d t  

But, the first term also vanishes in the same manner as Eqs. (28) and (27). and 
the remaining term is merely the very small work done on the satellite by the 
daily rotation of the longitudinal variations in the earth's field. This noncon- 
servative effect has not been reported yet even for the case of Vanguard I and, 
hence, is not considered further in this discussion. 
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The third and final term on the right-hand side of Eq. (26) can be integrated 
for the case of small variation in r to give 

and Eq. (26) becomes, for the case of low variation in r and for two observations 
from the same station, 

where A, ( t i t 2 )  is the average aerodynamic force in the u direction during the 
interval(t,, t 2 ) .  Or  if (Vtl r2 - Vt2 rr)  does not differ significantly from 0 (in terms 
of the accuracy of observations of V, and r \, 

At rn 

The "invariant" we have obtained is thus simply Newton's second law, general- 
ized for the case of an arbitrarily complex gravitational potential, in which the 
time rate of change of u momentum is equated to the dissipative forces in the 
u direction which produce the change. Similar relationships can be derived for 
the r, a, and t coordinates, but a r e  of less interest in the present investigation 
because the aerodynamic force components in those directions a re  so much 
smaller than that in the u direction. 

POSSIBLE APPLICATIONS 

The left-hand side of Eq. (35) contains only r and V, quantities which can be 
obtained directly from topocentric observations of the position and velocity of the 
satellite (acquired either from a single station o r  from simultaneous observations 
from several stations operating in an intervisible mode). (It is assumed that t ,  
the time of the observation, can always be acquired with adequate accuracy.) 
Equation (36) shows that only the differences in V, need be measured accurately. 
Hence, most kinds of systematic observation e r ro r s  such a s  station-position 
error ,  systematic range bias, o r  systematic angular bias have little effect on 
the measurement of the left-hand side of Eq. (35). There a re  a number of ways 
V ,  the scalar value of instantaneous velocity, can be obtained aside from simple 
positional differences on a single pass. Probably stellar photography plus 
Doppler is the most feasible technique for single-station operation, whereas use 
of range-difference observations, simultaneously acquired from three stations, 
is perhaps the best over-all approach. Inanycase, we assume that V and, hence, 
V, can be acquired accurately from a suitably instrumented satellite. W e  also 
consider two distinct classes of satellites which differ greatly in surface area- 
to-mass ratio, but a r e  bdth in near-circular orbits and have spherical shapes. 
Aerodynamic forces will be dominant in the nonconservative motion of the 
Echo-type satellite (assuming the effects of radiation pressure a re  removed), 
whereas they will be minimized in the case of the low surface-area-to-mass 
"geodetic" satellite. Hence, the application of Eq. (35) o r  Eq. (36) directly to 
observations of an Echo-type satellite should yield values of A, ( t l t2)  directly, 
particularly if the altitude is not higher than, say, 300 mi. Then, assuming the 
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size and mass a re  known, those values can yield average air density over the 
short period of time between observations (i.e.. a few hours in some cases). By 
combining the results of several stations, the averaging time can be cut down 
sharply. Presuming there is to be a number of stations in different parts of the 
world, it appears possible to monitor with high precision the very short-term 
fluctuations in upper atmosphere density. In view of the recent suggestive cor- 
relations of such density variations with solar phenomena, the technique here 
should yield definitive answers regarding the nature and degree of coupling 
between the solar and terrestrial atmospheres. Such a detailed record of at- 
mospheric drag would, of course, also be of great value in the computation of the 
ephemerides of all satellites. 

A "geodetic" satellite., on the other hand, should show very small values for 
the right-hand side of JQ. (35)-so small, in fact, that the equation approaches 
being a true invariant for closely-spaced observations and, hence, could be 
applied directly to the observations as  a data smoothing procedure. If observa- 
tions from different stations a re  compared, one could include integrals of 
.3Up/d8, JUP/JA, etc. over part of a revolution. Since the drag effects a r e  negligible, 
it appears possible, at least, to usethistechnique to generate a redundant series 
of simple integral equations from which some coefficients of the tesseral har- 
monics could be extracted. 
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